Quasi Efficient Solutions and Duality Results in a Multiobjective Optimization Problem with Mixed Constraints via Tangential Subdifferentials
نویسندگان
چکیده
We take up a nonsmooth multiobjective optimization problem with tangentially convex objective and constraint functions. In employing suitable qualification, we formulate both necessary sufficient optimality conditions for (local) quasi efficient solutions in terms of tangential subdifferentials. Furthermore, under generalized convexity assumptions, state strong, weak converse duality relations Wolfe Mond–Weir types. give number examples to illustrate the new concepts main results this paper.
منابع مشابه
Multiobjective optimization problem with variational inequality constraints
We study a general multiobjective optimization problem with variational inequality, equality, inequality and abstract constraints. Fritz John type necessary optimality conditions involving Mordukhovich coderivatives are derived. They lead to Kuhn-Tucker type necessary optimality conditions under additional constraint qualifications including the calmness condition, the error bound constraint qu...
متن کاملCharacterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملMultiobjective Mixed Symmetric Duality with Invexity
The usual duality results are established for mixed symmetric multiobjective dual programs without nonnegativity constraints using the notion of invexity/ generalized invexity which has allowed weakening various types of convexity/ generalized convexity assumptions. This mixed symmetric dual formulation unifies two existing symmetric dual formulations in the literature.
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10224341